煤田地质勘探与塌陷柱形成

煤田地质勘探与塌陷柱形成

一、煤田地质勘探与陷落柱的形成(论文文献综述)

张海涛[1](2021)在《淮南煤田奥陶系古岩溶成因机理及预测研究》文中认为华北煤田奥陶系碳酸盐岩内古岩溶十分发育,成为岩溶水储存和运移的主要场所与通道。目前,矿山对奥陶系岩溶研究多集中于含水层富水性和渗透性,缺乏对古岩溶发育特征及其成因机理研究,致使矿山开采过程中岩溶水患预测不准、岩溶水害时有发生。淮南煤田位于华北板块东南缘,为一 NWW展布的对冲式断褶构造带,地质及水文地质条件极为复杂。随着煤田逐渐向深部开采,奥陶系岩溶水害威胁程度日趋严重,古岩溶研究工作已迫在眉睫。因此,系统开展淮南煤田奥陶系古岩溶发育特征、分布规律及成因机理研究,不仅对淮南煤田及类似水文地质条件矿区的深部煤炭资源开采过程中岩溶水害防治具有重要的指导作用,而且对进一步认识华北地区奥陶系古岩溶的形成与演化也具有深远意义。本文以岩溶地质学、水文地质学、古地理学、沉积学、构造地质学和岩石力学等多学科交叉理论为指导,采用野外调查、岩芯观测、薄片鉴定、室内实(试)验、数值模拟、模型预测、地质统计分析等方法与手段,对淮南煤田奥陶系古岩溶发育特征、演化过程及其成因机理等方面开展了系统深入研究,并对古岩溶发育程度进行了预测。取得主要成果和认识如下:(1)系统研究了淮南煤田奥陶系古岩溶的发育特征、充填特征和分布特征:①淮南煤田奥陶系碳酸盐岩中主要发育有溶孔、裂缝、溶洞和岩溶陷落柱等四种古岩溶,且以裂缝和溶洞为主;②裂缝和大溶洞多为充填型,半充填和未充填型次之,小溶洞多为半充填型,其次是未充填型,全充填型最少;③裂缝、大溶洞和岩溶陷落柱主要沿着断层带分布,在垂向上具有明显的分带性。(2)确定了淮南煤田奥陶系古岩溶的形成期次、形成时间、形成环境和侵蚀性流体来源:①沉积岩溶形成于早奥陶世到中奥陶世,主要发生在海平面附近,是海水和大气降水共同溶蚀作用的结果;②风化壳岩溶形成于晚奥陶世到早石炭世,主要与大气降水的长期淋滤作用有关,在奥陶系地层顶部形成了风化壳孔缝洞系统,且垂向上存在明显的“四带”结构,即地表残积带、垂直渗流带、水平潜流带和深部缓流带;③压释水岩溶形成于中石炭世至早三叠世,发生在地下中高温、埋藏封闭环境中,其形成主要与上覆石炭-二叠系地层在成岩压实过程中释放出有机酸和酸性压释水有关;④热液岩溶发生在晚三叠世至晚白垩世期间的地下高温、深埋环境中,其形成主要与地下深部的岩浆热液活动有关;⑤混合岩溶形成于早白垩世至晚古近纪,发生在潘集和陈桥背斜的碳酸盐岩露头区的断裂带周围,其形成主要是大气淡水与深部地层水以及热液流体的混合溶蚀作用有关。(3)系统阐述了碳酸盐岩岩性、岩层结构、侵蚀性流体、断裂构造、古地貌与古水文、岩浆活动、以及岩溶作用时间等因素对淮南煤田奥陶系古岩溶发育的控制作用:①溶蚀试验表明,淮南煤田奥陶系碳酸盐岩溶蚀能力由强到弱依次为灰岩>角砾灰岩>白云质灰岩>泥质灰岩>灰质白云岩>白云岩;②水文地球化学模拟发现,侵蚀性流体溶蚀能力主要受流体温度、酸性气体成分(包括CO2和H2S等)和压力、以及混合流体比例等控制;③多期构造运动数值模拟结果表明,早燕山期和晚燕山期的断裂构造对淮南煤田奥陶系古岩溶发育起着重要作用,研究区中部地区是拉张裂缝和古岩溶发育的最佳位置;④奥陶系风化壳古地貌与古水文控制着奥陶系古岩溶的垂向发育特征,基岩风化面古地貌与古水文控制着奥陶系含水层的富水性和渗透性;⑤岩浆活动和岩溶作用时间对淮南煤田奥陶系古岩溶的形成和演化也起着重要作用。(4)以淮南煤田岩溶陷落柱为研究对象,推导出圆台形顶板塌陷判据公式,模拟分析了岩溶陷落柱基底溶洞和顶板塌陷的形成与演化过程,揭示了岩溶陷落柱形成机理。淮南煤田岩溶陷落柱的形成主要与晚三叠世至古近纪的热液溶蚀和混合溶蚀有关,印支期和早、晚燕山期形成的断裂构造、岩浆活动和碳酸盐岩半暴露区对淮南煤田岩溶陷落柱的形成与演化起到了关键作用。(5)建立了 GIS-AHP耦合模型,预测了淮南煤田奥陶系古岩溶发育程度及其平面分布:淮南煤田奥陶系古岩溶发育程度整体为中等~极强,仅西北、西南和东北部分地区奥陶系古岩溶发育程度表现为中等偏弱~弱,古岩溶发育强~极强区域主要集中在中部矿区。通过对比预测结果和区内岩溶陷落柱、奥陶系含水层突(涌)水点实际揭露位置,验证了预测模型、评价指标和指标权重的正确性,为深部岩溶水害防治工作提供了重要参考依据。图[106]表[36]参[327]

张刚艳[2](2021)在《超薄隔水层底板突水机理与区域修复技术研究》文中进行了进一步梳理煤矿在下组煤或深部开采时,多面临超薄隔水层条件下承压水体上安全开采问题,而底板“弱面”区极易诱发突水事故,其破坏过程、形态,矿压水压联合作用下的突水机理、超薄隔水层底板水害的高效治理等是亟待研究的问题。论文以深部超薄隔水层底板突水案例与现象为出发点,定量化分析了超薄隔水层底板突水主控因素,分析了岩溶承压水沿薄弱区突破的力学机理,对承压水弱面突破的动态特征进行了系统研究,提出基于承压水体上精细化探查的危险性评价,提出区域性修复的治理技术。论文取得的主要研究成果有:(1)利用灰色关联分析方法对超薄隔水层底板突水的主控因素进行了定量化研究,各因素对底板突水的贡献大小排序为:地质构造>底板隔水层厚度>含水层水压>工作面斜长>煤层采厚。(2)构建了超薄隔水层底板突水主控因素体系。分别从地质构造、底板相对隔水层、承压含水层、矿山压力四大类控制因素构建了超薄隔水层承压水体上开采底板突水的主控因素体系。(3)将超薄隔水层底板突水分为三种类型:底板完整弱面突水、底板隐伏构造弱面突水和底板多重构造弱面突水,并分析了各类型底板所能承受的极限水压值;从岩石破裂、裂隙演化、声发射事件等综合分析,认为采动弱面裂隙发生发展是个动态过程,抗压关键层的力学性质、厚度、所处层位是关键影响因素;建立了基础力学模型、突水灾变力学判据和弱面失稳破坏条件。(4)随着工作面的推进采场应力在煤壁与采空区实现常规切换,但存在构造弱面时,由于底板相对隔水层较薄,在构造区率先形成应力集中区,使得构造应力与采动应力叠加,当工作面推进到一定位置后采动破坏带与弱面裂隙贯通,形成导水通道,承压水显现自下而上的递进导升特征。(5)对示范工作面进行了“两探”的地质条件精细探查,圈定了富水区、构造区等;基于物探、钻探精细化地质探查结果,采用脆弱性指数法对超薄隔水层底板承压水体上开采进行了评价,进行了底板脆弱性分区。(6)对承压水体上开采安全性,采用底板防水煤岩柱合理留设进行判别。采用阻水系数法评价关键抗压层的阻水能力,提出抗压关键层的力学强度、厚度、空间位置等的重要作用。(7)采用区域注浆修复技术对底板进行增厚作业,提出了区域注浆治理技术一般治理模式以及立体化检测技术。示范工作面采用井下区域治理技术对奥灰顶界面进行了改造,经检验效果良好。

朱梦博[3](2021)在《采煤工作面高精度三维地质模型动态构建技术研究》文中提出目前,在采煤工作面煤层赋存条件采前探测的基础上,构建工作面高精度三维地质模型,已成为煤炭智能化开采地质保障技术的研究热点。本论文以采煤工作面多种地质探测成果为基础,采用理论分析、数值模拟和现场试验等研究方法,对采煤工作面的煤层厚度及顶/底板预测、工作面静态地质模型构建及其动态更新等多个方面进行了研究。取得的主要成果如下:(1)分析了采煤工作面全生命周期内地质建模数据的特征,将工作面地质模型抽象为煤层顶/底板、煤层厚度和地质构造3个子模型,对比优选了断层和陷落柱可视化建模方法。(2)将贝叶斯克里金法(Bayesian Kriging,BK)引入到槽波地震(In-seam seismic survey,ISS)煤厚反演中,提出了ISS-BK煤层厚度预测方法。(3)提出了以顺层钻孔为约束的煤层顶/底板迭代插值方法,通过引入虚拟顶/底板点对煤层顶/底板模型进行地质约束,避免了煤层顶/底板模型与顺层钻孔之间形成非逻辑交点。(4)以XY-S工作面为试验点,采用ISS-BK煤厚预测方法和顶/底板迭代建模方法分别建立了煤层厚度子模型和顶/底板子模型,结合构造综合解释成果,构建了XY-S工作面采前三维静态地质模型。(5)提出了以递进式预测方法为核心的采煤工作面三维动态地质模型构建技术,XY-S工作面初步试验结果表明:静态地质模型煤厚、底板平均误差分别为0.18 m、2.15 m;动态地质模型煤厚、底板平均误差分别为0.15 m、0.85 m;每2个截割循环(约1.6 m推采宽度)对采煤工作面进行1次地质编录,并更新地质模型时,预测动态地质模型煤层底板精度可达到0.15 m。(6)对基于工作面视频图像的地质编录技术进行了先导性研究,并根据摄影测量原理和深度卷积神经网络,实现了工作面局部煤-岩柱状信息自动提取。

张红梅[4](2020)在《淮北煤田岩溶陷落柱发育模式及预测研究》文中指出岩溶陷落柱突水是华北煤田主要的水害类型之一,一旦突水造成的后果十分严重。充水条件不同的陷落柱,将影响煤矿开采工作面涌突水威胁程度及其防治工程的设计。淮北煤田揭露的岩溶陷落柱多为干燥无水或弱淋水,但也发生过陷落柱特大突水事故,造成了巨大的财产损失。随着淮北煤田进入深部勘探与开采,岩溶陷落柱水害威胁程度将增大。淮北煤田构造和水文地质条件均较复杂,不同构造单元岩溶发育规律、陷落柱的揭露特征、分布规律、充水性特征等差异较大。因此,系统地开展淮北煤田岩溶陷落柱发育特征、发育模式、充水性及其控制机理研究,不仅具有重要的理论意义,而且具有重大的应用价值。本文以淮北煤田岩溶陷落柱为研究对象,采用野外勘查、现场测试、室内试验、模型预测等方法和手段,全面地研究了淮北煤田岩溶陷落柱的揭露方式、发育规律、充水性特征,分析了陷落柱与灰岩地层组合、煤田地质构造、地质(水文地质)单元、古径流场、现今地温场、现代径流场、岩溶发育、构造演化等之间的关系,在此基础上,建立了陷落柱的发育模式,揭示了陷落柱充水性的主要控制因素,并对淮北煤田典型发育模式陷落柱进行了预测研究。取得主要成果如下:1)依据淮北煤田地质构造、基岩面和松散层沉积特征、含水层水化学特征等,将淮北煤田地质(水文地质)单元划分为2个一级水文地质单元和5个二级水文地质亚单元。淮北煤田受徐-宿弧形构造中段和南段影响明显,具有南北分区、东西分段的特点,推覆构造西部外缘地带或锋带位置上的濉肖-闸河矿区和宿县矿区,揭露的陷落柱数量相对较多。2)综合研究了淮北煤田灰岩地层沉积组合类型、岩性特征,灰岩组成成分、灰岩地层测井特征等,确定了中奥陶统灰岩地层为岩溶陷落柱发育的基底地层。系统地研究了淮北煤田岩溶发育特征,总结了灰岩含水层岩溶发育规律。中奥陶统灰岩地层经历了沉积岩溶期、风化壳岩溶期、埋藏岩溶期、构造(半埋藏)岩溶期、二次埋藏岩溶期等5个岩溶作用期次,半埋藏岩溶期为淮北煤田岩溶发育和陷落柱形成的主要期次。3)系统地整理分析了淮北煤田陷落柱的揭露资料,从几何学特征、空间位置和分布规律、充填特征、充水性特征等方面,结合物探探查和放水试验等成果,构建了陷落柱特征分类体系。淮北煤田陷落柱揭露方式主要包括采掘直接揭露、突水显现和综合判定三种类型。揭露的陷落柱平面截面多为椭圆形,剖面为圆锥体,几何学特征差异较大;柱顶层位发育于太原组灰岩第2层段至松散层地层。根据陷落柱柱体充填特征,将其划分为压实和未压实两类。根据充水性将陷落柱分为不充水型、柱缘裂隙弱充水型和强充水型;结合陷落柱发育构造位置特征,厘定了陷落柱发育的四个期次。4)基于淮北煤田构造系统、灰岩地层沉积特征、岩溶发育规律、现代径流条件、古径流场恢复、地温分布规律、陷落柱发育特征及其充水性特征等研究基础上,建立了淮北煤田岩溶陷落柱的岩溶接触带型、向斜构造控制型、断裂构造控制型、内循环控制型、灰岩地层半裸露外循环控制型和灰岩地层隐伏外循环控制型6种典型发育模式。5)通过研究陷落柱与构造特征、灰岩含水层富水性、含水层间水力联系、边界断层性质、补径排条件、煤田构造演化、水质水位异常和地温场规律性之间的关系,论证了不充水型、柱缘裂隙弱充水型和强充水型三类陷落柱充水性的主要控制因素。不充水或弱充水型均为古陷落柱,分别是印支~早燕山期、早燕山期和晚燕山期岩溶作用的产物;强充水型陷落柱包括外循环控制发育型和内循环控制发育型,为现代岩溶作用的结果。灰岩地层岩溶发育程度高和含水层富水性强的位置,多揭露强充水型陷落柱。6)依据陷落柱空间位置特征和充水性控制因素研究结果,针对典型陷落柱发育模式的煤矿,基于GIS空间数据多源信息复合技术,定量地统计了内循环控制型、外循环控制型和向斜构造控制型发育模式下陷落柱发育特征参数,分别采用决策树分级归类法、多源信息复合预测法,对深部岩溶陷落柱空间位置及其充水性进行了预测,通过对比预测结果和已揭露陷落柱实际情况,验证了陷落柱发育模式和充水性控制机理结论的准确性,为深部岩溶陷落柱防治工作提供了空间靶区。图[121]表[45]参[205]

程建远,王会林[5](2020)在《煤矿地质保障技术现状与智能探测前景展望》文中研究表明煤矿智能化开采对煤矿地质保障技术提出了前所未有的挑战和机遇。传统的煤矿地质保障技术以煤炭资源勘查与评价、煤矿采区地质条件探测和矿井生产地质超前预测为目标任务,采用高精度三维地震、孔-巷瞬变电磁、反射槽波技术、定向钻探技术与装备等探测手段,为煤炭工业提供了大量的后备资源和可靠的技术支撑,但尚不能满足煤矿智能化、无人化开采的地质需求。煤矿智能化开采对高精度智能探测技术的需求,"倒逼"煤矿地质保障技术必须朝着从静态探测到动态探测、从主动探测到被动探测、从探掘异步到掘探同步、从人工探测到无人探测等方向转变;研发高精度智能动态探测技术与装备,开展探采地质信息的相互反馈,构建基于4D-GIS的地质透明化模型,实现三维地质模型与智能开采数据的深度融合,将成为煤矿智能化开采地质保障技术的发展趋势。

胡彦博[6](2020)在《深部开采底板破裂分布动态演化规律及突水危险性评价》文中提出在全国煤炭资源开发布局调整阶段,为了保证国家煤炭供给安全,东部矿区仍需保持20年左右的稳产期,许多矿井进入深部开采不可避免。围绕深部煤层开采底板突水通道动态形成过程机理、水害评价防治的科学技术问题,以华北型煤田东缘代表矿井为例,采用野外调研、理论分析、原位测试、室内试验、数值模拟等多种方法,按照华北煤田东缘矿区的赋煤地质结构特征→深部煤层开采底板变形破坏的动态监测方法→深部煤层开采底板岩层变形破坏的时空演化特征和突水模式→深部煤层开采底板破坏深度预测方法和开采底板突水危险性评价方法→深部煤层开采底板水害治理模式和治理效果序列验证评价方法的思路开展研究。主要成果如下:(1)提出了利用布里渊光时域反射技术(BOTDR)对深部煤层开采底板变形破坏的动态监测方法。根据研究表明BOTDR系统监测的动态变形量及应变分布状态与煤层底板岩层应力应变特征具有一致性,是有效监测煤层底板岩层变形破坏的新方案。BOTDR系统对煤层底板岩层监测显示,在采动过程中煤层底板岩层从上向下是呈现压-拉-压的应变趋势;同时获得了有效的煤层底板岩层的最大破坏深度,为深部煤层开采底板破坏深度的精准预测研究提供了有效的原位测试数据。(2)揭示了深部煤层开采完整底板破坏的时空演化特征:a.采前高应力区超前影响范围大约在煤壁前方38 m附近;b.开采底板岩层第一破断点的位置在采煤工作面煤壁前方29.07 m,煤层下方垂距9.24 m处,煤层底板破坏是从脆性岩层开始破断;c.开采底板破断发展趋势是从第一破断点首先向上发展破断,然后再同步向下破断。d.煤层开采底板破断的最大深度处于采前高应力区内,并且最大破断深度在采前高应力区内的峰值应力传播线附近(一般情况下)。根据煤层开采底板破坏的时空演化特征,对比分析了完整底板和含断层底板两种条件下煤层开采底板岩层破坏特点;同时对煤层开采底板进行横向分区,区域名称依次为原岩应力平衡区、采前高应力区、采后应力释放区、采后应力再平衡区。(3)利用BP神经网络、煤层开采底板应力螺旋线解析、气囊-溶液测漏法、经验公式法、多因素回归及分布式光纤实测等方法进行研究分析,得到了对深部煤层开采底板破坏深度进行有效的预测模型及方法;研究表明,多因素回归中模型III预测值更接近分布式光纤监测和气囊-溶液测漏法等实测数据,预测误差较小的预测方法依次为新的数学理论模型解析法和BP神经网络预测模型。(4)利用层次分析法、熵权法、地理信息系统等手段结合深部煤层开采破坏后有效隔水层厚度和其他多种影响底板突水的因素,对深度煤层开采底板突水危险性进行综合评价研究,得到了层次分析和熵权法(AHP-EWM)综合算法评价模型和基于改进型层次分析脆弱性指数(IAHP-VI)法两种深部煤层开采底板突水危险性评价模型,两者都具有一定的实用价值,在实际运用过程中可以根据研究区的实际情况择优选其一,也可以根据两种模型的预测结果取并集,能够进一步提高评价安全程度。(5)基于华北型煤田东缘矿区深部煤层开采底板突水通道的形成机理和突水模式,提出了“充水含水层和导水构造协同超前块段治理”模式并进行了定义。在现有的深部煤层开采水害的治理技术上,根据注浆改造目的层的构造、区域地应力、原岩水动力场等因素对地面受控定向钻进顺层钻孔方位和钻孔展布间距的设定进行科学有效的优化研究。(6)提出了“深部煤层开采底板水害治理效果序列验证评价方法”,利用对改造目的层的渗透系数和透水率、煤层底板阻水能力、矿井电法检测、检查钻孔数据等结合GIS系统进行综合研究,建立了科学系统化的评价方法。(7)利用“充水含水层和导水构造协同超前块段治理”模式对华北型煤田东缘矿区深部煤层底板水害进行了治理,结果显示治理效果良好,研究矿区深部煤层工作面实现了安全回采。本论文研究成果可为华北型煤田东缘矿区下组煤开采底板水害防治提供参考。

马良,郭瑞[7](2020)在《准格尔煤田不连沟矿井构造特征及其对煤矿生产的影响》文中研究说明准格尔煤田位于鄂尔多斯盆地伊盟隆起和晋西褶曲带的转折部位,煤田内的矿井构造样式多样,而且矿井生产揭露前后构造复杂程度发生了重大变化。以不连沟矿井地质勘查和矿井揭露的褶皱、断层、岩溶陷落柱、火成岩侵入体等地质构造为主要研究对象,通过数理统计方法对矿井内的构造发育特征进行了定量或半定量评价,分析不同地质构造的形成机制、演化背景及矿井构造复杂程度变化的主要原因,统计分析不同类型地质构造对矿井采掘生产的影响,总结矿井地质构造探查经验,提出适应于该区的构造探查思路。结果表明:不连沟煤矿构造样式多样,构造发育的分区特征明显,构造组合具有耦合性;矿井中部的弧形坡折带及波状褶皱形成开始于加里东构造运动,属于黄河断裂和呼-清断裂的伴生构造;区内走向EW(或近EW向)和NW断层组合是鄂尔多斯盆地印支期S—N向挤压应力和燕山期NW—SE向挤压应力共同作用的结果。各类地质构造制约着矿井采区部署、巷道掘进、工作面回采速度,造成大量资源损失,给矿井防治水带来巨大挑战。针对类似研究区的复杂矿区,建议采用三维地震勘探扫面,井下槽波、电法勘探靶区圈定,定向钻验证的"物探、钻探,地面、井下"相结合的综合探查方案。

方俊[8](2019)在《煤矿井下隐蔽致灾因素定向钻孔探查技术研究》文中研究表明随着煤矿开采规模、开采深度和开采复杂程度的逐渐提高,矿井面临的安全生产威胁越来越严重。隐蔽致灾因素是引发矿井安全事故的主要诱因和制约矿井正常有序生产的关键因素。事故预防是确保煤矿安全生产的首要手段和工作基础,通过事前的隐患排查和治理工作可主动降低灾害事故发生的概率。但现有隐蔽致灾因素探查技术仍处于发展阶段,其中物探方法具有多解性,探查距离较短,需要边开采边探查,且无法进行治理;钻探方法主要采用常规钻孔,不进行轨迹测量和控制,无法确定隐蔽致灾因素的具体空间位置,探查距离短,且易存在探查盲区,远远落后于我国规模化矿井的超前探查与治理需要。本文从我国煤矿井下事故预防及隐蔽致灾因素探查需要出发,提出采用井下定向钻孔进行隐蔽致灾因素探查的思路,利用经验总结、理论分析、数值模拟和现场试验等方法,从隐蔽致灾因素内涵与识别特征、基于定向钻孔的隐蔽致灾因素空间定位原理、探查定向钻孔轨迹测控精度影响因素与提高方法、基于自然伽马和电阻率的探查定向钻孔随钻地层识别技术等方面开展了以下研究工作。对瓦斯、水害、火灾、顶板、冲击地压等煤矿井下常见灾害的隐蔽致灾因素进行了详细分析,选定采空区、陷落柱、断层、煤层稳定性、充水水源作为主要探查对象;从定义、形成机理和分类等方面对探查对象的内涵进行了研究,并从空间特征、岩性特征和钻探特征等方面出发,总结了不同隐蔽致灾因素的探查要点,构建了探查判据。根据不同隐蔽致灾因素类型,对探查定向钻孔结构形式、布设原则、孔身结构和详细钻孔轨迹参数设计进行研究,确保探查定向钻孔轨迹设计合理;将井下定向钻孔描述模型和矿井采掘工程平面图坐标系结合,获得两种模型和坐标体系下坐标值互换方法,计算出钻孔轨迹各控制点和地质异常点在空间中的精确位置,实现煤层底板等高线实时绘制;结合煤层底板等高线、钻孔轨迹空间参数和地质异常点空间参数,推导得到了常见隐蔽致灾因素的参数获取方法,分析了探查精度的影响因素,并提出了技术保障措施。探查定向钻孔的测控精度是影响隐蔽致灾因素探查精度的主要因素。从钻孔轨迹计算、测量和控制精度三个方面,对影响探查定向钻孔轨迹测控精度的相关因素进行了研究。其中钻孔轨迹计算方面,分析了钻孔轨迹计算误差产生原因与误差值,实现井下定向钻孔的准确空间描述。钻孔轨迹参数测量精度方面,对测量精度影响因素进行了分析,建立了相应补偿计算方法,实现钻孔轨迹的精确测量;建立了煤矿井下电磁波信号传输模型,对含煤地层中电磁波信号传输特性和传输影响因素进行了分析;构建了非对称偶极子天线,采用双通道数据接收技术和自增益控制技术,实现了微弱电磁波信号精确解调处理,确保随钻测量数据的稳定高效传输。钻孔轨迹控制精度方面,考虑反扭矩作用,结合定向钻具造斜能力,提出了钻头处钻孔轨迹参数预测方法、螺杆马达工具面向角选取方法和造斜点(即工作模式切换点)的选取方法。探查定向钻孔的随钻地层识别精度是影响隐蔽致灾因素探查精度的次要因素。结合含煤地层物性特征分析,制定了基于自然伽马和电阻率相结合的随钻地层识别方案,研究了自然伽马和电阻率测量方法,分析了其测量影响因素;采用PNN概率神经网络对数据进行处理,实现了地层精确识别,为隐蔽致灾因素精准识别和探查定向钻孔施工提供了依据。研究成果在国内多个煤矿进行了井下试验和应用,其中在孟村煤矿进行了断层与煤层稳定性探查试验,在白芨沟煤矿进行了采空区与充水水源探查试验,在梅花井煤矿进行了充水水源探查试验,与传统探查方法相比,采用井下定向钻孔探查的精度高、距离远、周期短,并可进行隐蔽致灾因素治理,取得了显着应用效果,为矿井灾害事故防治提供了新的技术手段。

尹尚先,连会青,刘德民,尹慧超[9](2019)在《华北型煤田岩溶陷落柱研究70年:成因·机理·防治》文中认为系统阐述了华北型煤田陷落柱及其突水的研究历程和取得的成就。20世纪30年代煤田岩溶陷落柱偶然发现于煤炭开采中,因其带来开采及安全影响,研究不断深化。新中国成立伊始,百业待兴,能源先行,陷落柱对煤炭开发的影响逐渐显现,在解决现场技术问题的同时,基础理论得到蓬勃发展,至1984年开滦范各庄矿陷落柱特大突水事故震惊世界,其成功封堵复矿标志着我国治理技术基本成熟,该事件得以成功处理成为划时代的里程碑;其后能源行业从萧条到黄金10年,煤炭开发向深部、西部转移,陷落柱突水威胁日趋严重,新理论新技术的应用,促进相关研究不断向纵深发展,到目前为止,基本理论及治理技术日臻完善。由于其局域性和特殊性,国外仅有岩溶塌陷和采矿垮落的理论可作为研究借鉴。从基本特征、分布规律、成因机制、导水性、突水模式及机理、预测探查和治理等方面全方位进行了总结,归纳了岩溶陷落柱空间形态特征、充填物特点、揭露特征、结构构造特征等,系统梳理了岩溶陷落柱分类及类型;探讨了岩溶陷落柱导水性,建立了岩溶陷落柱预测指标体系及预测模型,分类提出了陷落柱突水模式和机理及力学判据,研讨了陷落柱突水量预测的可行性,规范了陷落柱预测探查及治理的程序,总结了陷落柱治理技术。作者指出了目前陷落柱研究中存在的不足,凝练了岩溶陷落柱成因、导水性、预测、突水机理及突水量预测等方面的待解科学命题,列举了陷落柱精细化探查、突水监测预警、治理装备技术等方面技术难题,指明了未来探索及发展方向。应当指出,尽管现有成果基本成型,但距离技术理论体系的完善、满足保障矿井安全生产还有很长的路要走。

李飞[10](2019)在《基于地震与瞬变电磁联合反演的导水陷落柱精细探测研究》文中研究说明近年来,导水通道(岩溶陷落柱、断层、裂隙带、老窑井巷和采空区等)导致的煤矿水害事故频发,给安全生产和人民生命财产带来的损失极为惨重。因为导水通道通常埋深大尺度小,单一探查技术存在局限性,现有探测方法针对性不强、精度不高等原因,目前对导水通道的精细探测尚难以实现。精细探测要求既要对导水通道位置进行精确定位,又要对导水通道富水性进行准确判断。联合反演是地球物理方法的前沿研究方向,可以减少反演多解性,提高探测精度和分辨率。地震勘探空间分辨率高,瞬变电磁法对富水性敏感,研究建立适用于煤矿导水通道探测的联合反演方法,实现对导水通道的精细探测,可以为矿井水灾防控和突水抢险救灾提供科学技术支撑,具有重要的理论意义和应用价值。本文以导水陷落柱精细探测为例,在瞬变电磁场正演算法研究基础上,建立了基于瞬变电磁法(Transient Electromagnetic Method,TEM)(包括矿井TEM)和地震波阻抗的单向交叉梯度联合反演算法,通过模型算例和工程实例验证了联合反演效果。主要研究内容、方法和结论如下:(1)在前人研究基础上推导了半空间和全空间条件下3D TEM和1D TEM正演算法,提出了 3D TEM正演双模型方法,编写了正演程序,为联合反演建立了正演基础,包括:①推导了无源和有源介质中3D瞬变电磁场方程及其有限差分离散格式,利用模型设置空气层的方法避免地面边界条件的特殊处理,利用等效为面电流源的回线源作为激励源,迭代计算一次场和二次场,实现了 3D TEM正演计算。②基于1D TEM频率域响应公式,利用滤波系数法进行响应公式的数值计算,利用折线逼近法进行频率域响应值到时间域的转换,实现了 1D TEM正演计算。③提出了 3D TEM正演双模型方法,通过3D有限差分算法计算异常场,通过1D数字滤波算法计算背景场,然后叠加得到总场。模型计算结果表明双模型方法可以在保证计算精度的前提下有效减少模型网格数量,提高计算效率;在相同模型网格数量情况下,双模型方法相比有限差分方法具有更高的计算精度。(2)基于在后采样时刻视电阻率计算中考虑前采样时刻视电阻率计算结果,提出了“累积全区视电阻率计算法”,给出了具体计算公式和流程,可以为反演提供更精确的初始模型。基于线性空间理论推导了最小二乘反演算法。研究建立了半空间和全空间条件下的Pseudo-2D TEM反演算法,Pseudo-2D TEM反演基于2D电阻率模型和1D正演程序,既满足了交叉梯度联合反演算法对2D模型的要求,又实现了 2D TEM快速反演计算。(3)通过理论分析和公式推导,提出了基于TEM(包括矿井TEM)和地震波阻抗的单向交叉梯度联合反演算法。提出的联合反演算法主要由Pseudo-2D TEM反演算法、地震波阻抗反演方法、单向交叉梯度联合反演算法和地震波阻抗模型的插值转换与聚类分割处理等技术组成。其中,通过去掉联合反演目标函数中的地震正演项,只在交叉梯度项中保留地震波阻抗模型参数,实现单向交叉梯度联合反演计算;通过对地震波阻抗模型进行双三次插值处理,实现地震波阻抗模型和电阻率模型之间的模型网格匹配;通过基于K-means算法的地震波阻抗模型聚类分割处理方法消除地震波阻抗模型中的次要结构变化,增加联合反演稳定性。提出的联合反演算法实现了 TEM(包括矿井TEM)和多次覆盖反射地震数据的联合反演,相比传统联合反演方法主要应用于大尺度目标体探测或浅地表成像,提出的联合反演算法可以实现大深度小尺度目标体的精细探测。(4)以华北型石炭-二叠纪煤田为地质基础,建立了含导水陷落柱地质地球物理计算模型,分别进行了利用大定源TEM观测系统和多次覆盖地震观测系统的3D TEM和3D地震勘探正演计算。对模拟数据分别进行了 TEM反演、波阻抗反演和联合反演计算,结果表明:①地震波阻抗反演结果具有较高的空间分辨率;②TEM反演结果地层的层状特征不明显,陷落柱形态模糊,边界难以识别,整体空间分辨率较低;③联合反演结果可以同时重建理论模型地层和陷落柱的形状和电性特征,对非中心位置测点的二次场畸变也有一定的压制作用,联合反演结果既可以有效识别地层界面和陷落柱边界,又能够反映陷落柱富水性,相比单独TEM反演结果探测精度显着提高。(5)通过理论分析、数值模拟和现场试验,推导建立了矿井TEM互感消除和大地二次场提取公式,为实测数据的联合反演奠定了基础。建立了煤层底板下30m含导水陷落柱的华北型煤田地质地球物理计算模型,进行了矿井TEM和地震勘探3D数值模拟计算。对模拟数据分别进行了 TEM反演、波阻抗反演和联合反演计算,结果表明:①地震波阻抗反演结果对陷落柱具有较高的空间分辨率;②受体积效应影响,TEM反演结果难以确定陷落柱边界;③联合反演结果能够准确确定陷落柱的形状和位置,能够反映陷落柱的富水性,可以实现对导水陷落柱的精细探测。(6)结合工程实例对联合反演算法进行了验证和应用。在内蒙古鄂尔多斯市某煤矿开展了 TEM现场探测试验,结合工区三维地震资料的精细数据处理结果,分别对实测数据进行了地震波阻抗反演、TEM反演和联合反演计算。联合反演结果表明陷落柱埋深约360m,形态上窄下宽,在6上号煤层(深度380m)水平直径约50m。联合反演结果与钻探结果吻合较好。单独TEM反演结果难以确定陷落柱的范围,联合反演结果既能确定陷落柱的位置和范围,又能够反映陷落柱的富水情况,达到了对导水陷落柱的精细探测。

二、煤田地质勘探与陷落柱的形成(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、煤田地质勘探与陷落柱的形成(论文提纲范文)

(1)淮南煤田奥陶系古岩溶成因机理及预测研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究目的与意义
    1.2 国内外研究现状及存在问题
        1.2.1 古岩溶
        1.2.2 古岩溶形成期次及其识别方法研究现状
        1.2.3 古岩溶分布规律与控制因素研究现状
        1.2.4 古岩溶识别与预测研究现状
        1.2.5 华北煤田古岩溶研究现状
        1.2.6 淮南煤田岩溶研究现状
        1.2.7 存在的问题与不足
    1.3 研究内容、方法与技术路线
        1.3.1 研究内容
        1.3.2 研究方法
        1.3.3 技术路线
    1.4 论文工作量
2 研究区地质及水文地质概况
    2.1 研究区概况
    2.2 地层与构造
        2.2.1 地层
        2.2.2 构造
    2.3 含水层系统
        2.3.1 新生界松散孔隙含(隔)水层系统
        2.3.2 基岩裂隙-溶隙含水层系统
3 奥陶系古岩溶发育特征
    3.1 奥陶系地层与岩性特征
        3.1.1 地层厚度及结构
        3.1.2 岩性特征
        3.1.3 岩石矿物特征
    3.2 奥陶系古岩溶发育类型及特征
        3.2.1 溶孔
        3.2.2 裂缝
        3.2.3 溶洞
        3.2.4 岩溶陷落柱
    3.3 奥陶系古岩溶充填特征
        3.3.1 充填物类型
        3.3.2 充填特征
    3.4 奥陶系古岩溶分布特征
        3.4.1 平面分布特征
        3.4.2 垂向分布特征
    3.5 本章小结
4 奥陶系古岩溶形成期次确定
    4.1 奥陶系古岩溶形成背景
        4.1.1 奥陶系地层沉积背景
        4.1.2 区域构造演化背景
        4.1.3 岩浆活动
    4.2 古岩溶地球化学特征分析
        4.2.1 样品采集与测试
        4.2.2 碳和氧同位素特征
        4.2.3 微量元素特征
    4.3 古岩溶充填物形成环境分析
        4.3.1 盐度-温度-深度计算
        4.3.2 形成环境分析
    4.4 奥陶系古岩溶形成期次确定
    4.5 本章小结
5 不同期次古岩溶形成环境与发育模式
    5.1 沉积岩溶
        5.1.1 地质背景
        5.1.2 古气候
        5.1.3 古水文
        5.1.4 沉积岩溶发育模式
    5.2 风化壳岩溶
        5.2.1 地质背景
        5.2.2 古气候
        5.2.3 古地貌
        5.2.4 古水文
        5.2.5 风化壳岩溶发育模式
    5.3 压释水岩溶
        5.3.1 地质背景
        5.3.2 古水文地质条件
        5.3.3 压释水岩溶发育模式
    5.4 热液岩溶
        5.4.1 构造运动
        5.4.2 岩浆活动
        5.4.3 热液岩溶发育模式
    5.5 混合岩溶
        5.5.1 地质背景
        5.5.2 古气候
        5.5.3 古地貌
        5.5.4 古水文
        5.5.5 混合岩溶发育模式
    5.6 奥陶系古岩溶演化模式
    5.7 本章小结
6 奥陶系古岩溶发育控制因素
    6.1 地层岩性与结构
        6.1.1 碳酸盐岩岩性
        6.1.2 岩层结构
    6.2 侵蚀性流体
        6.2.1 大气淡水
        6.2.2 地层压释水
        6.2.3 热液流体
        6.2.4 混合流体
    6.3 断裂构造
        6.3.1 构造分期
        6.3.2 古构造应力场数值模拟
        6.3.3 模拟结果分析
        6.3.4 多期构造运动对古岩溶发育的控制作用
    6.4 古地貌与古水文
        6.4.1 奥陶系风化壳古地貌与古水文
        6.4.2 基岩风化面古地貌与古水文
    6.5 岩浆活动
    6.6 岩溶作用时间
    6.7 本章小结
7 淮南煤田岩溶陷落柱形成机理探讨
    7.1 基底溶洞形成过程分析
        7.1.1 溶洞形成机理
        7.1.2 溶洞形成过程数值模拟
    7.2 顶板塌陷过程分析
        7.2.1 顶板塌陷力学机制
        7.2.2 顶板塌陷数值模拟
    7.3 岩溶陷落柱形成机理探讨
    7.4 本章小结
8 淮南煤田奥陶系古岩溶发育程度预测
    8.1 预测方法
        8.1.1 层次分析法
        8.1.2 基于GIS的层次分析法
    8.2 预测模型建立
        8.2.1 评价指标体系建立
        8.2.2 评价指标权重确定
        8.2.3 评价指标归一化处理
        8.2.4 综合得分模型建立
    8.3 预测结果分析
    8.4 结果验证
    8.5 本章小结
9 结论与展望
    9.1 结论
    9.2 主要创新点
    9.3 展望
参考文献
致谢
作者简介及读研期间主要科研成果

(2)超薄隔水层底板突水机理与区域修复技术研究(论文提纲范文)

摘要
abstract
1 绪论
    1.1 背景与意义
        1.1.1 研究背景
        1.1.2 研究目的与意义
    1.2 国内外研究现状
        1.2.1 薄隔水底板承压水上开采现状
        1.2.2 煤层底板突水研究现状
    1.3 需进一步研究的问题
    1.4 研究内容与技术路线
        1.4.1 研究方法与内容
        1.4.2 研究技术路线
2 超薄隔水层底板突水主控因素分析
    2.1 底板突水现象与特征分析
        2.1.1 底板突水案例
        2.1.2 底板突水认识与特征
    2.2 超薄隔水层底板突水主控因素定量化分析
        2.2.1 主控因素灰色关联分析原理
        2.2.2 主控因素定量分析
        2.2.3 主控因素定量化排序
    2.3 超薄隔水层底板突水控制因素体系
        2.3.1 超薄隔水层底板突水主控因素作用
        2.3.2 超薄隔水层底板突水主控因素体系
    2.4 本章小结
3 超薄隔水层底板突水机理
    3.1 弱面区突水类型与特征
        3.1.1 典型类型
        3.1.2 基本特征
    3.2 抗压关键层岩石裂隙演变声发射试验特征
        3.2.1 抗压关键层岩石裂隙演变特征试验设计
        3.2.2 岩石裂隙演变特征的声发射试验
        3.2.3 岩石裂隙演变的动态特征
    3.3 底板完整弱面突水机理
        3.3.1 基础力学模型
        3.3.2 突水灾变力学判据
        3.3.3 弱面失稳破坏条件分析
    3.4 底板隐伏构造弱面突水机理
        3.4.1 基础力学模型
        3.4.2 突水灾变力学判据
        3.4.3 弱面失稳破坏条件分析
    3.5 底板多重构造弱面突水机理
        3.5.1 基础力学模型
        3.5.2 突水灾变力学判据
        3.5.3 弱面失稳破坏条件分析
    3.6 本章小结
4 承压水动态突破规律特征
    4.1 示范工作面概况
    4.2 承压水“弱面突破”动态特征数值模拟理论基础与模型设置
        4.2.1 流固耦合模拟理论基础
        4.2.2 数值模拟模型设置
    4.3 底板完整弱面承压水动态突破特征
        4.3.1 不同推进长度应力场演变特征
        4.3.2 不同推进长度煤层围岩破坏特征
        4.3.3 不同推进长度位移场演变特征
        4.3.4 不同推进长度渗流场演变特征
    4.4 底板隐伏构造弱面承压水动态突破特征
        4.4.1 不同推进长度下应力场演变特征
        4.4.2 煤层覆岩破坏特征
        4.4.3 不同推进长度下位移场演变特征
        4.4.4 不同推进长度下渗流场演变特征
    4.5 底板多重构造弱面承压水动态突破特征
        4.5.1 不同推进长度下应力场演变特征
        4.5.2 煤层覆岩破坏特征
        4.5.3 不同推进长度下位移场演变特征
        4.5.4 不同推进长度下渗流场演变特征
    4.6 本章小结
5 超薄隔水层工作面突水脆弱性评价
    5.1 工作面地质条件精细化探查
        5.1.1 物探精细化探查
        5.1.2 钻探精细化探查
        5.1.3 底板岩性组合特征与力学性能
    5.2 AHP型底板突水脆弱性评价
        5.2.1 理论基础
        5.2.2 示范工作面突水主控因素专题图
        5.2.3 主控因素突水贡献权重的确定
        5.2.4 底板突水脆弱性评价
    5.3 本章小结
6 承压水体上突水弱面修复的区域治理技术
    6.1 超薄隔水层底板安全煤岩柱尺寸设计
        6.1.1 底板防水安全煤岩柱留设方法
        6.1.2 底板采动破坏带深度综合确定
        6.1.3 底板岩层阻水系数测试
        6.1.4 底板防水安全煤岩柱尺寸
        6.1.5 底板岩层的注浆增厚作业
    6.2 工作面突水弱面区域修复技术
        6.2.1 突水弱面修复的区域治理技术
        6.2.2 区域治理层位选择与治理模式
        6.2.3 弱面区域治理修复效果立体检测
        6.2.4 示范工作面底板弱面的区域治理修复
    6.3 本章小结
7 结论
    7.1 主要结论
    7.2 创新点
    7.3 不足及展望
参考文献
致谢
作者简介
学位论文数据集

(3)采煤工作面高精度三维地质模型动态构建技术研究(论文提纲范文)

摘要
abstract
1 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
        1.2.1 采煤工作面精细探测技术
        1.2.2 煤矿地质建模技术
        1.2.3 工作面地质透明化
        1.2.4 存在的主要问题
    1.3 研究内容
    1.4 研究方法与技术路线
2 采煤工作面地质建模数据与建模方法
    2.1 采煤工作面地质建模数据
        2.1.1 工作面设计阶段
        2.1.2 工作面掘进阶段
        2.1.3 工作面回采前
        2.1.4 工作面回采阶段
    2.2 煤层地质模型要素
    2.3 工作面地质模型可视化构模方法
        2.3.1 煤层面建模
        2.3.2 断层建模
        2.3.3 陷落柱建模
        2.3.4 可视化建模思路
    2.4 本章小结
3 基于贝叶斯克里金的槽波地震反演煤层厚度方法
    3.1 煤层厚度槽波探测技术
        3.1.1 槽波频散特性
        3.1.2 透射槽波层析成像
        3.1.3 煤层厚度反演
    3.2 贝叶斯克里金插值方法
    3.3 ISS-BK煤层厚度预测技术
        3.3.1 ISS-BK煤厚预测方法
        3.3.2 ISS-BK煤厚预测流程
        3.3.3 ISS-BK方法的特点
    3.4 煤层厚度预测实例
        3.4.1 工作面概况
        3.4.2 槽波地震煤厚反演
        3.4.3 ISS-BK煤厚反演
        3.4.4 回采验证结果与分析
    3.5 本章小结
4 顺层钻孔约束下煤层顶/底板的迭代建模
    4.1 顺层钻孔中的煤层地质信息
        4.1.1 煤-岩地质信息
        4.1.2 钻孔轨迹测量
        4.1.3 自然伽马测井
    4.2 煤层顶/底板迭代插值流程
        4.2.1 顺层钻孔煤、岩孔段标注
        4.2.2 煤层顶/底板模型构建
        4.2.3 局部噪点平滑处理
        4.2.4 非逻辑交点检测
        4.2.5 判断迭代终止条件
        4.2.6 虚拟顶底板点引入
    4.3 煤层顶/底板建模的模拟测试
        4.3.1 模拟数据
        4.3.2 煤层顶/底板建模精度评价
    4.4 应用实例研究
        4.4.1 试验工作面概况
        4.4.2 工作面煤层地质勘探数据
        4.4.3 煤层顶/底板迭代建模及分析
    4.5 本章小结
5 采煤工作面三维静态地质模型构建
    5.1 试验区地质条件
        5.1.1 井田地质条件
        5.1.2 XY-S工作面概述
    5.2 静态地质建模数据
        5.2.1 三维地震勘探成果
        5.2.2 巷道地质编录数据
        5.2.3 井下钻探信息
        5.2.4 槽波探测结果
    5.3 三维静态地质模型构建
        5.3.1 静态地质模型构建流程
        5.3.2 XY-S工作面静态地质模型
    5.4 静态地质模型构造探采对比
    5.5 本章小结
6 采煤工作面三维动态地质模型构建
    6.1 动态地质建模方法
        6.1.1 动态地质建模流程
        6.1.2 递进式预测方法
    6.2 动态地质建模试验
        6.2.1 动态地质数据
        6.2.2 基于回采地质编录的动态建模
    6.3 XY-S工作面地质模型精度评价
        6.3.1 模型剖切面与地质编录剖面对比
        6.3.2 煤层模型底板误差统计分析
        6.3.3 煤层模型煤厚误差统计分析
    6.4 本章小结
7 工作面自动地质编录方法的探索
    7.1 工作面地质信息图像分析
        7.1.1 图像中的地质信息
        7.1.2 地质信息辨识与提取的影响因素
    7.2 “薄-中厚”煤层工作面顶板线计算
        7.2.1 工作面起伏形态
        7.2.2 工作面顶板线计算模型
        7.2.3 图像中倾角标注与计算
    7.3 工作面图像语义分割与局部煤-岩柱状信息提取
        7.3.1 图像分割方法优选
        7.3.2 卷积神经网络架构
        7.3.3 基于U-net的工作面图像语义分割模型
        7.3.4 局部煤-岩柱状信息自动化提取
    7.4 基于工作面图像的地质编录试验
        7.4.1 工作面顶板线计算
        7.4.2 割岩区煤-岩柱状信息
        7.4.3 工作面地质编录与精度分析
    7.5 本章小结
8 结论与展望
    8.1 主要成果
    8.2 创新点
    8.3 展望
参考文献
致谢
作者简历
学位论文数据集

(4)淮北煤田岩溶陷落柱发育模式及预测研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 选题背景及研究意义
    1.2 国内外研究现状
        1.2.1 国外研究现状
        1.2.2 国内研究现状
    1.3 存在的问题
    1.4 研究的内容和方法
        1.4.1 研究内容
        1.4.2 研究方法和技术路线
    1.5 研究工作过程与工作量
2 淮北煤田地质与水文地质特征
    2.1 地层特征
        2.1.1 区域地层
        2.1.2 煤系地层
    2.2 地质构造特征
        2.2.1 淮北煤田构造特征
        2.2.2 淮北煤田区域构造史
    2.3 水文地质特征
        2.3.1 含隔水层
        2.3.2 淮北煤田水文地质单元划分
    2.4 本章小结
3 淮北煤田岩溶发育规律
    3.1 淮北煤田灰岩地层
        3.1.1 太原组灰岩地层
        3.1.2 中奥陶统灰岩地层
        3.1.3 中奥陶统和太原组灰岩地层沉积特征
    3.2 淮北煤田中奥陶统灰岩地层岩溶期次
    3.3 淮北煤田灰岩地层岩溶特征与发育规律
        3.3.1 太原组灰岩地层岩溶特征与发育规律
        3.3.2 中奥陶统灰岩地层岩溶特征与发育规律
        3.3.3 淮北煤田灰岩含水层富水性
    3.4 本章小结
4 淮北煤田岩溶陷落柱发育特征
    4.1 淮北煤田现有陷落柱揭露方式
        4.1.1 采掘直接揭露型
        4.1.2 突水显现型
        4.1.3 综合判断型
    4.2 淮北煤田陷落柱发育特征
        4.2.1 几何学特征
        4.2.2 平面分布特征
        4.2.3 柱体充填特征
        4.2.4 充水性特征
    4.3 淮北煤田岩溶陷落柱发育期次
        4.3.1 淮北煤田半埋藏期岩溶期次与陷落柱形成
        4.3.2 淮北煤田岩溶陷落柱发育期次
    4.4 淮北煤田陷落柱特征分类
    4.5 本章小结
5 淮北煤田岩溶陷落柱发育模式与充水性控制机理
    5.1 岩溶陷落柱的发育条件
    5.2 淮北煤田岩溶陷落柱发育模式
        5.2.1 岩溶接触带型陷落柱发育模式
        5.2.2 向斜构造控制型陷落柱发育模式
        5.2.3 断裂构造控制型陷落柱发育模式
        5.2.4 内循环控制型陷落柱发育模式
        5.2.5 灰岩地层半裸露外循环控制型陷落柱发育模式
        5.2.6 灰岩地层隐伏外循环控制型陷落柱发育模式
    5.3 淮北煤田岩溶陷落柱充水性控制机理
        5.3.1 不充水型陷落柱控制机理
        5.3.2 柱缘裂隙弱充水型陷落柱控制机理
        5.3.3 外循环强充水型陷落柱控制机理
        5.3.4 内循环强充水型陷落柱控制机理
    5.4 本章小结
6 淮北煤田岩溶陷落柱空间位置与充水性预测
    6.1 淮北煤田陷落柱发育控制特征
        6.1.1 陷落柱发育古河道控制特征
        6.1.2 陷落柱发育现代地表水补给特征
        6.1.3 陷落柱发育断裂构造控制特征
        6.1.4 陷落柱发育向斜构造控制特征
        6.1.5 陷落柱发育地温场控制特征
    6.2 内循环控制型陷落柱预测
        6.2.1 预测指标单因子分级依据
        6.2.2 单因子决策树分级分类法
        6.2.3 任楼煤矿陷落柱空间位置与充水性预测结果
    6.3 外循环控制型陷落柱预测
        6.3.1 预测指标单因子分级依据
        6.3.2 AHP-独立性系数耦合权重法
        6.3.3 单因子指标数据归—化处理
        6.3.4 朱庄煤矿岩溶陷落柱发育预测结果
    6.4 向斜构造控制型陷落柱预测
        6.4.1 预测指标单因子分级依据
        6.4.2 AHP-独立性系数耦合权重法
        6.4.3 刘桥矿区深部陷落柱空间位置与充水性预测结果
    6.5 本章小结
7 结论与展望
    7.1 结论
    7.2 主要创新点
    7.3 后期展望
参考文献
致谢
作者简介及读研期间主要科研成果

(5)煤矿地质保障技术现状与智能探测前景展望(论文提纲范文)

1 煤矿地质保障技术的发展历程
    1.1 煤炭资源勘查的地质保障
    1.2“双高矿井”建设的地质保障
    1.3 煤矿安全高效生产地质保障
    1.4 煤矿智能化开采的地质保障
2 煤矿地质保障技术的主要进展
    2.1 高精度三维地震勘探技术
    2.2 孔-巷瞬变电磁探测技术
    2.3 煤矿井下反射槽波探测技术
    2.4 大透距多频同步无线电波透视技术
    2.5 煤矿井下长距离定向钻进技术与装备
    2.6 煤矿水害隐患探查与防治技术
3 煤矿智能开采地质保障的技术难题
    3.1 采煤工作面地质透明化精度偏低
    3.2 掘进工作面前方智能化随掘随探
    3.3 智能化超前探测、监测与预警技术
    3.4 绿色开采倒逼地质保障技术进步
4 煤矿智能开采地质保障的发展方向
    4.1 煤矿井下钻探物探协同探测
    4.2 煤矿井下随掘智能超前探测
    4.3 煤矿动力灾害智能监测预警
    4.4 透明矿井三维地质动态建模
5 结语

(6)深部开采底板破裂分布动态演化规律及突水危险性评价(论文提纲范文)

致谢
摘要
abstract
变量注释表
1 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
    1.3 研究内容及方法
    1.4 技术路线
2 华北型煤田东缘区域地质及水文地质条件
    2.1 区域赋煤构造及含水层
    2.2 深部煤层开采底板突水水源水文地质特征
    2.3 煤系基底奥陶系灰岩含水层水文地质特征
    2.4 本章小结
3 深部开采底板变形破坏原位动态监测
    3.1 分布式光纤动态监测底板采动变形破坏
    3.2 对比分析光纤实测与传统解析和原位探查
    3.3 本章小结
4 深部开采煤层底板破坏机理和突水模式研究
    4.1 深部开采煤层底板破裂分布动态演化规律
    4.2 深部煤层开采底板突水模式
    4.3 本章小结
5 深部开采底板突水危险性非线性预测评价方法
    5.1 深部煤层开采底板破坏深度预测
    5.2 下组煤开采底板突水危险性评价研究及应用
    5.3 本章小结
6 深部开采底板水害治理模式及关键技术
    6.1 底板水害治理模式和效果评价方法
    6.2 底板水害治理模式和治理效果评价的应用
    6.3 本章小结
7 结论
    7.1 主要结论
    7.2 主要创新性成果
    7.3 展望
参考文献
作者简历
学位论文数据集

(7)准格尔煤田不连沟矿井构造特征及其对煤矿生产的影响(论文提纲范文)

1 区域地质背景
2 矿井构造特征
    2.1 褶皱
    2.2 断层
    2.3 陷落柱
    2.4 岩浆侵入
    2.5矿井地质构造复杂程度
3 构造对矿井的影响
    3.1 降低工作面回采效率
    3.2 影响矿井采区布置
    3.3 对煤岩、煤质的影响
    3.4 矿井储量损失
    3.5 增加矿井水害防治工作难度
4 结论

(8)煤矿井下隐蔽致灾因素定向钻孔探查技术研究(论文提纲范文)

摘要
abstract
1 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 物探探查技术
        1.2.2 钻探探查技术
        1.2.3 化探探查技术
    1.3 研究内容和技术路线
        1.3.1 研究内容
        1.3.2 技术路线
2 煤矿隐蔽致灾因素内涵及识别特征
    2.1 煤矿井下常见灾害及其致灾因素分析
        2.1.1 瓦斯灾害
        2.1.2 水害
        2.1.3 火灾
        2.1.4 顶板灾害
        2.1.5 冲击地压
    2.2 常见隐蔽致灾因素内涵分析
        2.2.1 采空区
        2.2.2 断层
        2.2.3 陷落柱
        2.2.4 煤层稳定性
        2.2.5 充水水源
    2.3 常见隐蔽致灾因素特征分析
        2.3.1 空间形态特征
        2.3.2 岩性特征
        2.3.3 钻探特征
    2.4 本章小结
3 基于定向钻孔的隐蔽致灾因素空间定位原理
    3.1 探查定向钻孔结构与空间布置设计
        3.1.1 探查定向钻孔设计原则
        3.1.2 探查定向钻孔空间布置形态
        3.1.3 探查定向钻孔空间布置参数
        3.1.4 探查定向钻孔孔身结构设计
        3.1.5 探查定向钻孔轨迹参数设计
    3.2 地质异常点空间坐标计算
        3.2.1 钻孔相对坐标系与矿井空间坐标系
        3.2.2 高程点相对坐标与空间坐标转换
    3.3 基于探查定向钻孔的煤层底板等高线实时绘制
        3.3.1 煤层顶底板等高线高程点计算
        3.3.2 煤层底板等高线绘制
    3.4 隐蔽致灾因素空间参数获取
        3.4.1 采空区
        3.4.2 断层
        3.4.3 陷落柱
        3.4.4 煤层稳定性
        3.4.5 充水水源
    3.5 隐蔽致灾因素探查精度影响因素
    3.6 本章小结
4 探查定向钻孔轨迹测控精度影响因素与提高方法
    4.1 探查定向钻孔轨迹计算误差分析与修正
        4.1.1 钻孔轨迹计算模型
        4.1.2 测量间距
        4.1.3 子午线收敛角
        4.1.4 测量深度
    4.2 探查定向钻孔轨迹参数高精度测量和稳定随钻传输
        4.2.1 电磁波随钻测量装置整体设计
        4.2.2 钻孔轨迹参数测量原理与误差补偿
        4.2.3 电磁波信号传输特性研究
        4.2.4 孔内信号高效发射
        4.2.5 孔口信号接收与解调处理
    4.3 探查定向钻孔控制精度影响因素与技术措施
        4.3.1 探查定向钻孔钻头处轨迹预测
        4.3.2 螺杆马达工具面向角调整与修正
        4.3.3 造斜点选择
    4.4 本章小结
5 基于自然伽马和电阻率相结合的探查定向钻孔随钻地层识别
    5.1 含煤地层识别基础
        5.1.1 含煤地层地球物理特征
        5.1.2 不同地层伽马放射性特点
        5.1.3 不同地层电阻率特点
    5.2 随钻自然伽马测量技术
        5.2.1 随钻方位自然伽马测量
        5.2.2 方位伽马强度计算与围岩影响因素
    5.3 随钻电磁波电阻率测量技术
        5.3.1 随钻电磁波电阻率测量
        5.3.2 电磁波电阻率测量数据模拟
        5.3.3 电阻率的计算与影响因素分析
    5.4 地层识别模型与方法
        5.4.1 地层识别模型的建立
        5.4.2 PNN概率神经网络原理
        5.4.3 基于PNN概率神经网络的地层识别试验
        5.4.4 地层识别效果对比试验
    5.5 本章小结
6 井下定向钻孔隐蔽致灾因素探查技术现场试验
    6.1 孟村煤矿断层与煤层稳定性探查现场试验
        6.1.1 矿井概况与工程背景
        6.1.2 探查方案设计
        6.1.3 钻孔施工
        6.1.4 探查效果
    6.2 白芨沟煤矿采空区与充水水源探查现场试验
        6.2.1 矿井概况与工程背景
        6.2.2 探查方案设计
        6.2.3 钻孔施工
        6.2.4 探查效果
    6.3 梅花井煤矿充水水源探查现场试验
        6.3.1 矿井概况与工程背景
        6.3.2 探查方案设计
        6.3.3 钻孔施工
        6.3.4 探查效果
    6.4 本章小结
7 结论与建议
    7.1 结论
    7.2 创新点
    7.3 展望
致谢
参考文献
附录

(9)华北型煤田岩溶陷落柱研究70年:成因·机理·防治(论文提纲范文)

0 引言
1 华北煤田岩溶陷落柱危害及其研究历程
    1.1 岩溶陷落柱危害
    1.2 研究历程
    1.3 国外研究情况
2 岩溶陷落柱研究进展
    2.1 岩溶陷落柱特征
        2.1.1 岩溶陷落柱形态特征
        2.1.2 岩溶陷落柱内部充填物特征
        2.1.3 岩溶陷落柱出露特征
        2.1.4 岩溶陷落柱结构构造特征
    2.2 岩溶陷落柱发育分布规律
        2.2.1 区域构造控制岩溶陷落柱区域分布规律
        2.2.2 区域岩溶陷落柱分布规律
        2.2.3 煤田内岩溶陷落柱发育分布规律
    2.3 岩溶陷落柱分类
        2.3.1 陷落柱单项指标分类
        2.3.2 陷落柱综合指标分类
    2.4 岩溶陷落柱成因
        2.4.1 陷落柱形成基本条件及控制因素
        2.4.2 岩溶陷落柱成因
        2.4.3 岩溶陷落柱形成时间
    2.5 岩溶陷落柱导水性
        2.5.1 岩溶陷落柱导水性影响因素及条件
        2.5.2 岩溶陷落柱导水性宏观定性辨识
        2.5.3 岩溶陷落柱导水性微观定量半定量辨识
    2.6 岩溶陷落柱预测及探查
        2.6.1 岩溶陷落柱预测
        2.6.2 岩溶陷落柱探查
3 岩溶陷落柱突水机理分析
    3.1 岩溶陷落柱突水机理
    3.2 岩溶陷落柱突水模式及判据
    3.3 岩溶陷落柱突水危险性评价
    3.4 岩溶陷落柱突水量预测
    3.5 岩溶陷落柱治理
        3.5.1 岩溶陷落柱综合治理原则
        3.5.2 岩溶陷落柱突水治理
        3.5.3 岩溶陷落柱超前治理
4 岩溶陷落柱及其突水机理研究展望
    4.1 待解科学问题
    4.2 工程技术解决措施
        4.2.1 岩溶陷落柱精细探测精准定位精致堵水
        4.2.2 陷落柱突水监测预警系统
    4.3 建议
5 结论

(10)基于地震与瞬变电磁联合反演的导水陷落柱精细探测研究(论文提纲范文)

摘要
Abstract
1 引言
    1.1 研究背景与意义
    1.2 国内外研究现状
        1.2.1 导水通道地球物理探测方法
        1.2.2 联合反演国内外研究现状
    1.3 目前研究存在的问题
    1.4 研究内容与技术路线
        1.4.1 研究内容
        1.4.2 技术路线
    1.5 主要创新点
2 瞬变电磁场双模型三维正演方法
    2.1 3D TEM时域有限差分正演算法
        2.1.1 时域瞬变电磁场计算方程
        2.1.2 3D有限差分离散格式
        2.1.3 激励源与边界条件
        2.1.4 稳定性条件
    2.2 1D TEM数字滤波法正演算法
        2.2.1 频率域瞬变电磁场计算方程
        2.2.2 半空间1D TEM频率域响应计算公式
        2.2.3 全空间1D TEM频率域响应计算公式
        2.2.4 频率域响应公式的数值计算方法
        2.2.5 频率域响应值转换到时间域计算方法
    2.3 均匀介质模型TEM解析解
    2.4 3D TEM正演双模型方法
        2.4.1 基于电场的磁感应强度随时间变化率计算方法
        2.4.2 双模型方法
        2.4.3 算法验证
    2.5 本章小结
3 联合反演理论与算法
    3.1 改进的TEM全区视电阻率定义与算法
        3.1.1 半空间条件下的定义与算法
        3.1.2 全空间条件下的定义与算法
        3.1.3 算法效果验证
    3.2 1D TEM反演理论与算法
        3.2.1 模型参数设置
        3.2.2 阻尼最小二乘反演算法
        3.2.3 基于阻尼最小二乘法的1D TEM Occam反演
    3.3 Pseudo-2D TEM反演算法
        3.3.1 Pseudo-2D TEM反演算法
        3.3.2 粗糙度矩阵的计算
    3.4 地震波阻抗反演方法
        3.4.1 地震常规数据处理方法
        3.4.2 波阻抗反演理论
        3.4.3 地震数据反演流程
    3.5 基于TEM与地震波阻抗的单向交叉梯度联合反演算法
        3.5.1 交叉梯度函数
        3.5.2 单向交叉梯度联合反演算法
        3.5.3 联合反演流程
    3.6 本章小结
4 大定源TEM与地震联合反演
    4.1 地质地球物理计算模型与观测系统
        4.1.1 导水陷落柱地质地球物理计算模型
        4.1.2 大定源TEM观测系统
        4.1.3 地震观测系统
    4.2 正演模拟数据
        4.2.1 3D TEM模拟数据
        4.2.2 3D地震模拟数据
    4.3 单一方法反演
        4.3.1 Pseudo-2D TEM反演
        4.3.2 地震波阻抗反演
    4.4 联合反演
        4.4.1 加权算子对联合反演的影响规律
        4.4.2 联合反演结果
        4.4.3 联合反演与单独反演结果的综合对比分析
    4.5 本章小结
5 矿井TEM与地震联合反演
    5.1 矿井TEM互感电动势消除方法
        5.1.1 矿井TEM电阻率偏低现象
        5.1.2 电阻率偏低问题探讨
        5.1.3 互感消除与电阻率偏低校正方法
        5.1.4 现场测试
    5.2 地质地球物理计算模型与观测系统
        5.2.1 导水陷落柱地质地球物理计算模型
        5.2.2 矿井TEM和地震勘探观测系统
    5.3 正演模拟数据
        5.3.1 3D TEM模拟数据
        5.3.2 3D地震模拟数据
    5.4 单一方法反演
        5.4.1 Pseudo-2D TEM反演
        5.4.2 地震波阻抗反演
    5.5 联合反演
        5.5.1 联合反演结果
        5.5.2 联合反演与单独反演结果的综合对比分析
    5.6 本章小结
6 工程实例
    6.1 试验区概况
    6.2 工程布置与数据采集
    6.3 数据处理与反演结果
        6.3.1 地震波阻抗反演结果
        6.3.2 TEM反演与联合反演结果
    6.4 本章小结
7 结论与展望
    7.1 结论
    7.2 展望
参考文献
致谢
作者简介

四、煤田地质勘探与陷落柱的形成(论文参考文献)

  • [1]淮南煤田奥陶系古岩溶成因机理及预测研究[D]. 张海涛. 安徽理工大学, 2021
  • [2]超薄隔水层底板突水机理与区域修复技术研究[D]. 张刚艳. 煤炭科学研究总院, 2021(01)
  • [3]采煤工作面高精度三维地质模型动态构建技术研究[D]. 朱梦博. 煤炭科学研究总院, 2021(01)
  • [4]淮北煤田岩溶陷落柱发育模式及预测研究[D]. 张红梅. 安徽理工大学, 2020(07)
  • [5]煤矿地质保障技术现状与智能探测前景展望[J]. 程建远,王会林. 智能矿山, 2020(01)
  • [6]深部开采底板破裂分布动态演化规律及突水危险性评价[D]. 胡彦博. 中国矿业大学, 2020(01)
  • [7]准格尔煤田不连沟矿井构造特征及其对煤矿生产的影响[J]. 马良,郭瑞. 煤田地质与勘探, 2020(03)
  • [8]煤矿井下隐蔽致灾因素定向钻孔探查技术研究[D]. 方俊. 西安科技大学, 2019(01)
  • [9]华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 尹尚先,连会青,刘德民,尹慧超. 煤炭科学技术, 2019(11)
  • [10]基于地震与瞬变电磁联合反演的导水陷落柱精细探测研究[D]. 李飞. 中国矿业大学(北京), 2019(04)

标签:;  ;  ;  ;  ;  

煤田地质勘探与塌陷柱形成
下载Doc文档

猜你喜欢